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Abstract: Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced
biosensing applications. This was studied from an experimental and theoretical perspective: non-
linear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were
measured as a function of static magnetic offset field. The Langevin model in thermodynamic
equilibrium was fitted to the experimental data to derive parameters of the lognormal core size
distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo
(MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency com-
ponents were numerically demodulated and compared with both experiment and Langevin model
predictions. From the latter, we derived that approximately 90% of the frequency mixing magnetic
response signal is generated by the largest 10% of MNP. We therefore suggest that small particles
do not contribute to the frequency mixing signal, which is supported by MC-simulation results.
Both theoretical approaches describe the experimental signal shapes well, but with notable differ-
ences between experiment and micromagnetic simulations. These deviations could result from
Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet
unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the
largest particles dominate the experimental signal but concurrently do not fulfill the precondition of
thermodynamic equilibrium required by Langevin theory.

Keywords: magnetic nanoparticles; frequency mixing magnetic detection; Langevin theory; micro-
magnetic simulation; nonequilibrium dynamics; magnetic relaxation

1. Introduction

Magnetic nanoparticles (MNPs) have a plethora of applications not only in biomedical
diagnostics, mainly determined by sample preparation, but also in detection [1,2]. MNPs
are used as markers for biomolecules in immunoassays; in addition to the well-established
techniques of AC-Susceptometry [3] and Relaxometry [4], Frequency-Mixing Magnetic
Detection (FMMD) [5] has been increasingly applied during the past decade because of its
high selectivity. This technique relies on simultaneously applying a low-frequency magnetic
driving field, which brings the particles close to saturation, and a high-frequency excitation
field, which probes the particles’ susceptibility. Due to the nonlinear magnetization of
the MNP, harmonics of both the individual incident frequencies and the intermodulation
products of both frequencies are generated. Their signal can usually be picked up using a
receive coil; however, other magnetic detectors can also be employed [6]. Due to its high
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sensitivity, FMMD has been successfully applied to realize magnetic immunoassays for
the detection of a multitude of different analytes, for instance, viruses [7], antibiotics [8],
or bacterial toxins [9]. Furthermore, FMMD enables the distinction of different types of
MNP based on their different frequency mixing response spectrum [10–12], which opens
the potential for multi-analyte detection.

In this work, we present offset-field-dependent FMMD measurements of MNPs and
compare them quantitatively with two different modeling approaches: a simple Langevin-
function-based thermal equilibrium model based on a lognormal size distribution, and a
micromagnetic Monte Carlo (MC)-simulation method [13]. Although particles are immo-
bilized in the experiment and can thus only relax according to Néel relaxation, the MC-
simulation also includes Brownian relaxation. With this, micromagnetic MC-simulations
provide new insight into the frequency mixing excitation of MNPs by modeling their non-
equilibrium dynamics. For the Langevin model, the nature of relaxation is irrelevant. The
core size distribution parameters derived from the Langevin model were used as starting
values for the MC-simulation. As a consistency check, the MC results were again compared
against the Langevin model. Prospects and limitations of both models are discussed, and
suggestions for future research are developed.

2. Materials and Methods
2.1. Experimental Setup for Frequency Mixing Magnetic Detection

A custom-built measurement setup was employed for simultaneous sample excitation
and demodulation signal detection. This comprises two excitation and two pick-up coils
in a measurement head unit, allowing digital frequency demodulation directly from the
detected signal. Details on the setup can be found in earlier works [5,14,15]. The applied
alternating magnetic excitation field (AMF) was:

H(t) = H0 + H1 sin(2π f1t) + H2 sin(2π f2t) (1)

where H0 denotes the static magnetic offset field, H1 = 1.29 mT/µ0 is the magnetic field
amplitude at high frequency f1 = 30, 543 Hz, and H2 = 16.4 mT/µ0 is the amplitude at
low frequency f2 = 62.95 Hz. With this low-frequency amplitude, the particles are driven
well into the nonlinear regime of the magnetization curve. The almost 400-fold higher f 1
yields well-detectable voltages at the mixing frequencies.

ABICAP® columns from Senova GmbH (Weimar, Germany) containing polyethylene
filters with pore sizes of approximately 50 µm, a height of 5 mm, and a diameter of 5 mm
were primed with ethanol in a desiccator to remove air bubbles from the filter. After
washing the column twice with 500 µL of distilled water, 450 µL of nanomag®-D SPIO
(Prod.#: 79-00-201; Micromod Partikeltechnologie GmbH, Rostock, Germany) was flushed
through the column, followed by another washing step to ensure homogeneous MNP
distribution and to remove unbound MNPs. The sample was dried at ambient conditions.
Then the columns with the immobilized MNPs were measured at varying static field
strength H0 = (0, . . . , 24) mT/µ0 in steps of 0.48 mT/µ0. Due to coil-current resistive
heating, the temperature T in the measurement head was approximately 318 K. The first
four nonlinear magnetic moment demodulation components from frequency mixing (both
real and imaginary part) were stored: f1 + n · f2 with n = 1, 2, 3, 4. Background subtraction
was performed using data from reference measurements without a sample, and phase
correction for frequency-dependent phase shift inside the induction coil and amplification
chain was performed.

2.2. Thermodynamic Langevin Model of a Magnetic Nanoparticle Ensemble

In the classical thermodynamic model description, the MNP sample can be described
as an ensemble of noninteracting particles. (The validity of this assumption for our sample
is assessed in Appendix A by an estimation of the dipole–dipole energy.) Neglecting
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surface effects, the saturation magnetic moment of a spherical particle with a core diameter
dc is given by: ∣∣mp

∣∣ = mp(dc) =
Msπd3

c
6

(2)

with Ms denoting the saturation magnetization of the MNP. For simplicity, all particles are
assumed to be spheres.

The total magnetic moment of the particle ensemble in thermodynamic equilibrium is
calculated by averaging over a Boltzmann distribution of the orientations of the individual
particle moments, yielding a dependence on the amplitude of the applied magnetic field
|H| = H, which is governed by a Langevin function [16]:

L (ξ) = coth(ξ)− 1
ξ

(3)

with the dimensionless magnetic field variable:

ξ =
mpµ0H

kBT
(4)

and with temperature T, Boltzmann’s constant kB = 1.38 ×·10–23 J/K, and the permeability
of vacuum µ0 = 4π ×·10–7 Vs/Am [17].

In the average over the particle ensemble, it has to be considered that the saturation
magnetic moment mp of each particle depends on its diameter dc. Usually, particle ensem-
bles exhibit a lognormal size distribution with a probability density function PDF(dc) given
by [17]:

PDF(dc, d0, σ) =
1√

2π · dc · σ
· exp

(
− ln2(dc/d0)

2σ2

)
, (5)

with the median diameter d0 and the standard deviation σ of the diameters’ natural
logarithm.

The total magnetic moment of the ensemble of Np particles is then calculated by
integrating over the lognormal distribution:

mtot = Np

∫ ∞

0
ddc·PDF(dc)·mp(dc)·L

(
Msπd3

c
6kBT

µ0H
)

. (6)

In our FMMD scheme [5], the particle ensemble is exposed to a two-frequency excita-
tion with static offset magnetic field (see Equation (1)). Inserting Equations (1) and (2) into
(6) yields:

mtot =
Np Msπ

6

∞∫
0

ddc·PDF(dc)·d3
c ·

·L
(

Msπd3
c µ0

6kBT [H0 + H1 sin(2π f1t) + H2 sin(2π f2t)]
) (7)

As shown in [5], the nonlinearity of the magnetization curve gives rise to the emer-
gence of intermodulation products m·f 1 ± n·f 2 of the total magnetic moment of the particle
ensemble (with m and n denoting integers). In particular, the frequency mixing components
f 1 + f 2, f 1 + 2·f 2, f 1 + 3·f 2 and f 1 + 4·f 2 appear. In the limit of small excitation amplitudes
H1 and H2, these frequency mixing responses can be calculated with a Taylor expansion of
Equation (3), yielding offset field dependencies of the mixing components proportional to
the higher order derivatives of the Langevin function [5]. In the case of larger excitation
amplitudes H1 and H2, the Taylor approximation is no longer valid and has to be replaced
by the respective Fourier components of Equation (7). For instance, the average nonlinear
moment response m1(dc) at frequency f 1 + f 2 of one particle with diameter dc is given by:
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m1(dC) =
Msπd3

c
6 · 2k

k
∑

i=0
cos[2π( f1 + f2)ti]·

·L
(

Msπd3
c µ0

6kBT [H0 + H1 sin(2π f1ti) + H2 sin(2π f2ti)]
) (8)

The factor 2/k normalizes the sum and accounts for the full-period average over sin2(..)
which is 1

2 . The sampling time steps ti should be chosen such that a sufficient number of
samples is taken in one high frequency period. In our calculations, we took 10 steps in a
period 1/f 1, i.e., ∆t = ti – ti–1 = 0.1/f 1, yielding sufficient numerical precision. Although in
our experiments, the high frequency f 1 was 485 times larger than the low frequency f 2, it
was sufficient to select f 1 = 20·f 2 for our numerical calculations. Thus, k = 200 was used.

In a similar fashion, the response component m2(dc) at frequency f 1 + 2·f 2 is obtained
from:

m2(dc) =
Msπd3

c
6 · 2k

k
∑

i=0
sin[2π( f1 + 2 f2)ti]·

·L
(

Msπd3
c µ0

6kBT [H0 + H1 sin(2π f1ti) + H2 sin(2π·2 f2·ti)]
)

.
(9)

Note the cos[..]/sin[..] alternation in the reference frequency term behind the sum
symbol in Equations (8) and (9), which is due to the fact that with increasing order, the
frequency mixing responses are alternately uneven (point-symmetric) and even (axisym-
metric) functions. Components m3(dc) and m4(dc) are calculated similarly.

The total magnetic moment component mn,tot at the frequency mixing component f 1 +
n·f 2 is then obtained by integration over the lognormally weighted particle ensemble:

mn,tot
(
d0, σ, Np

)
= Np

∫ ∞

0
ddc·PDF(dc, d0, σ)·mn(dc). (10)

Equation (10) constitutes our forward model for calculating the frequency mixing
signals. The model contains just three fitting parameters, the lognormal distribution
characteristics median diameter d0 and width σ, and the total number of particles Np. The
measured nonlinear magnetic moment components of nanoparticle samples at frequencies
f 1 + n·f 2, n = 1, 2, 3, 4, were fitted with this model using the Levenberg–Marquardt
least-squares algorithm.

2.3. Micromagnetic Monte Carlo (MC-)Simulation

The nonlinear particle relaxation dynamics in nonequilibrium conditions under the
influence of an applied AMF, H, can be described by combined Néel–Brownian relax-
ation [13]. The Néel relaxation of the direction of the magnetic moment of a single MNP,
mp, is governed by the Landau–Lifshitz–Gilbert equation (LLG) [18]:

dmp

dt
=

µ0γ

1 + α2 ·
(
Heff ×mp + αmp ×

(
Heff ×mp

))
(11)

with the permeability of free space, µ0, the electron gyromagnetic ratio, γ, the damping
parameter, α, and the effective field Heff. The Brownian rotation of the MNP easy axis, n, is
described via the generalized torque, Θ, as follows [19]:

dn
dt

=
Θ

6ηVH
× n (12)

with the carrier matrix viscosity, η, and the MNP hydrodynamic volume, Vh = π/6 · d3
h, in

which dh is the hydrodynamic particle diameter. Néel and Brownian relaxation are coupled
in the internal particle energy:

U = −µ0 ·mp
(
mp ·H

)
− K ·Vc

(
mp · n

)2
+ ε IA (13)
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where mp =
∣∣mp

∣∣ = Vc · MS (cf. Equation (2)) is the magnitude of the MNP magnetic
moment, and Vc = π/6 · d3

c is the MNP core volume. The first term describes the Zee-
man energy including the applied field H. The second term incorporates the anisotropy
energy via the effective anisotropy constant, K, and under the assumption of uniaxial
anisotropy and spherically shaped particles. The third term in Equation (13) includes
magnetic dipole–dipole interaction. However, thermal energy, εtherm, dominates magnetic
interaction energy by two orders of magnitude in our MNP samples, so that particle–
particle interaction is negligible (ε IA � εtherm). Please refer to Appendix A for a detailed
estimation of the effect of magnetic dipole–dipole interaction energy that corroborates our
assumption. Thermal fluctuations are included by adding the terms Hth and Θth, which are
implemented as Gaussian-distributed white noise with zero mean values (〈Hi

th(t)〉 = 0 and
〈Θi

th(t)〉 = 0) and variances 〈Hi
th(t)H

j
th(t
′)〉 =

(
2kB T ·

(
1 + α2))/(γmpα

)
· δijδ(t− t′) and

〈Θi
th(t)Θ

j
th(t
′)〉 = 12kBTηVH · δijδ(t− t′), respectively. Here T is the global temperature in

the system. With this, the effective field and generalized torque read:

Heff = −
1

mp · µ0
· ∂U

∂m
+ Hth = H +

2K ·Vc

mp · µ0
·
(
mp · n

)
n + Hth (14)

Θ =
∂U
∂n
× n + Θth = −2K ·Vc

(
mp · n

)(
mp × n

)
+ Θth (15)

We apply the Stratonovic–Heun scheme to solve the system of coupled stochastic
differential Equations (11) through (15) and implement a Monte Carlo method routine
as described in our previous works [20–22]. The full source code is available as listed in
the Data Availability Statement and its results are denoted as MC-simulations henceforth.
Simulation parameters were chosen as listed in Table 1 with the MNP properties matching
the experimentally determined values from Table 2. Furthermore, the damping parameter α
was set to unity [23]. One thousand particles were simulated simultaneously and initialized
with randomized directions of magnetization and easy axes for each MNP. The MNPs
were then thermalized for one-fifth of the total number of time steps, N, before the AMF
was applied. We used N = 50,000 and averaged the magnetization over five independent
simulation runs to achieve a good compromise between accuracy and acceptable computa-
tion time. The time step sizes were then 10 ns. The simulations were performed with the
open-access Python code referenced in the Data Availability Statement. Calculations were
carried out on a PC cluster consisting of 2 × CPU Intel Xeon E5-2687W, 3.1/3.8 GHz, with
8 clusters each and RAM 64 GB each. The typical calculation time for one offset field value
was approx. 53 h.

To approximate experimental data for comparison, the excitation field parameters
were chosen as H1 = 1 mT/µ0, f1 = 40,000 Hz, H2 = 16 mT/µ0, f2 = 2000 Hz, and the
static field was varied from H0 = (0, . . . , 24) mT/µ0 with a step size of 1 mT/µ0.

Table 1. Simulation parameters applied in the micromagnetic simulation model.

Effective
Anisotropy

Constant

Saturation
Magnetization 1 MS

Mass Density
of Magnetite

Viscosity of
Surrounding

(Water)
Temperature

11 kJ/m3 476 kA/m 5.2 g/cm3 8.9× 10−4Pa·s 300 K
1 The literature value for bulk magnetite from [24] was used.
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Table 2. Material properties of MNPs from fitting the experimental data with the Langevin model.

Core Diameter
dc

Log-Normal
Distribution

Width σ

Polydispersity
Index (PDI)

Hydrodynamic
Diameter 2 dh

Concentration 1

7.81 nm 0.346 0.127 20 nm 2.4 mg(Fe)/mL
1 The concentration c is taken from the datasheet of the manufacturer. The concentration in the filter might be
smaller due to unbound particles being washed out undetected. 2 The hydrodynamic diameter dh is taken from
the datasheet of the manufacturer.

3. Results
3.1. Experimental Results and Thermodynamic Langevin Model Fitting

The Langevin model (Equation (10), with inputs (8) and (9), see Section 2.2) was fitted
to the measured real parts of the experimental data using the Levenberg–Marquardt least-
square algorithm routine, whose results are plotted in Figure 1. Although the immobilized
MNPs in the experimental setup are blocked in Brownian rotation, this step is justified
because Langevin theory approximates the magnetization of the entire ensemble of MNP
independently of the underlying mechanism of relaxation. The imaginary parts of the
response signal were found to be two orders of magnitude weaker and were therefore
disregarded. For all four demodulation components f1 + n · f2 with n = 1, 2, 3, 4, a very
good agreement between experimental and simulated results was observed, confirmed by
a coefficient of determination of R2 > 0.98. Only for component f 1 + f 2 at high offset field
did the simulation predict slightly higher values than measurement, whereas for f 1 + 2·f 2
and f 1 + 3·f 2, the simulation slightly underestimated measurements.
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Figure 1. MNP nonlinear magnetic moment for dual frequency excitation at mixing frequencies
fLF + n · fHF with n = 1, 2, 3, 4 from experimental measurement (H1 = 1.29 mT/µ0, f1 = 30,534 Hz,
H2 = 16.4 mT/µ0, f2 = 62.95 Hz) and fitted with the Langevin model of Equation (10) with the same
parameters.

Fitting yielded the MNP material properties of median core diameter, dc, and its
log-normal distribution width, σ, which are listed in Table 2. The hydrodynamic diameter,
dh, and the concentration of the MNP were taken from the datasheet of the manufacturer.
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3.2. Micromagnetic MC-Simulation Results

We used the MNP material properties derived from fitting the Langevin model to the
experimental data as described in the previous Section 3.1 (see Table 2) as input parameters
for the micromagnetic MC-simulations. These simulations yield magnetization curves
(M(H)-loops), which are shown for exemplary static offset fields in Figure 2.
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Figure 2. Exemplary magnetization curves (M(H)-loops) generated from micromagnetic MC-
simulations for different static offset fields H0 = (0, 10, 20) mT/µ0. Inset shows magnification
of small applied fields, revealing a slight opening of the loops.

The magnetization curves are (almost) identically overlapping, but shift towards the
magnetization saturation of MNP as the static offset field, H0, increases. The M(H)-loops
are very slightly opened, revealing minor hysteresis area (see Figure 2, inset). For values
of H0 > (H1 + H2), e.g., for H0 = 20 mT/µ0 in Figure 2, the applied field is constantly
keeping the MNPs in (almost) saturation and no hysteresis area is present.

From the M(H)-loops, the first four demodulation components f1 + n · f2 were calcu-
lated following Equations (8) and (9). For comparison, the experimental measurement data
and the MC-simulated data were normalized to their respective highest value, Mmax, and
plotted alongside each other in Figure 3. The agreement between experimental and simu-
lated data is acceptable, as confirmed by a coefficient of determination of R2 > 0.76 for all
four demodulation components. We observe for component f 1 + f 2 that MC-simulation con-
sistently underestimates the measurement results. However, the peak at H0 = 15 mT/µ0
coincides. For the mixing term f 1 + 2·f 2, MC-simulation underestimates the measurement
results for H0 < 18 mT/µ0 and H0 > 20 mT/µ0 and shows a mismatch of over 50% for the
peak value at H0 = 15 mT/µ0. MC-simulation and measurement of component f 1 + 3·f 2
coincide for values up to H0 = 10 mT/µ0 and again for H0 ≥ 20 mT/µ0. However, around
the peak at H0 = 16 mT/µ0, MC-simulations overestimate experimental data by approx.
70%. For mixing term f 1 + 2·f 2, MC-simulations match experimental data, except around
the peaks at H0 =11 mT/µ0 and H0 = 16 mT/µ0.



Nanomaterials 2021, 11, 1257 8 of 16
Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 3. Normalized MNP nonlinear magnetic moment for dual frequency excitation at mixing 
frequencies 𝑓ଵ + 𝑛 ⋅ 𝑓ଶ with 𝑛 = 1,2,3,4 comparing experimental results (𝐻ଵ = 1.29 mT/µ0, 𝑓ଵ =30,534 Hz, 𝐻ଶ = 16.4 mT/µ0, 𝑓ଶ = 62.95 Hz) and predictions from micromagnetic MC-simula-
tions (𝐻ଵ = 1 mT/µ0, 𝑓ଵ = 40,000 Hz, 𝐻ଶ = 16 mT/µ0, 𝑓ଶ = 2,000 Hz). 

3.3. Comparing Micromagnetic MC-Simulation Results and Thermodynamic Langevin Model 
Fitting 

To test whether predictions from the Langevin model and MC-simulations show re-
producible results, we fitted the Langevin model directly to the results from MC-simula-
tion. We used the same input parameters for MC-simulations and Langevin model fitting 
of 𝐻ଵ = 1 mT/µ0, 𝑓ଵ = 40,000 Hz, 𝐻ଶ = 16 mT/µ0, 𝑓ଶ = 2,000 Hz, and fixed the mean 
core diameter with 𝑑௖ = 7.81 nm and variable distribution parameter 𝜎 for the fitting. 
The results are plotted in Figure 4, confirming overall good agreement with a coefficient 
of determination of 𝑅ଶ > 0.989 for all four demodulation components. From the qualita-
tive comparison, one sees that Langevin model fitting and MC-simulations coincide, ex-
cept for the secondary peaks for 𝑛 = 3 and 𝑛 = 4 (cf. Figure 4). The fitting yields a dis-
tribution width of 𝜎 = 1.466. This is significantly different than the input parameters to 
MC-simulations (𝜎 = 0.346), questioning our hypothesis that assumes identical outputs 
from the Langevin model and MC-simulation. As we discuss in detail in the next section, 
we suspect the reasons for this lie with MNP properties that are not (yet) accurately rep-
resented in the modeling. 
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n = 1, 2, 3, 4 comparing experimental results (H1 = 1.29 mT/µ0, f1 = 30,534 Hz, H2 = 16.4 mT/µ0, f2 = 62.95 Hz) and
predictions from micromagnetic MC-simulations (H1 = 1 mT/µ0, f1 = 40,000 Hz, H2 = 16 mT/µ0, f2 = 2000 Hz).

3.3. Comparing Micromagnetic MC-Simulation Results and Thermodynamic Langevin
Model Fitting

To test whether predictions from the Langevin model and MC-simulations show re-
producible results, we fitted the Langevin model directly to the results from MC-simulation.
We used the same input parameters for MC-simulations and Langevin model fitting of
H1 = 1 mT/µ0, f1 = 40, 000 Hz, H2 = 16 mT/µ0, f2 = 2000 Hz, and fixed the mean core
diameter with dc = 7.81 nm and variable distribution parameter σ for the fitting. The
results are plotted in Figure 4, confirming overall good agreement with a coefficient of
determination of R2 > 0.989 for all four demodulation components. From the qualitative
comparison, one sees that Langevin model fitting and MC-simulations coincide, except
for the secondary peaks for n = 3 and n = 4 (cf. Figure 4). The fitting yields a distri-
bution width of σ = 1.466. This is significantly different than the input parameters to
MC-simulations (σ = 0.346), questioning our hypothesis that assumes identical outputs
from the Langevin model and MC-simulation. As we discuss in detail in the next sec-
tion, we suspect the reasons for this lie with MNP properties that are not (yet) accurately
represented in the modeling.
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Figure 4. Normalized MNP nonlinear magnetic moment for dual frequency excitation at mixing
frequencies f1 + n · f2 with n = 1, 2, 3, 4 from micromagnetic MC-simulations fitted with the thermo-
dynamic Langevin model with fixed core diameter dC = 7.813 nm.

4. Discussion

The Langevin model has been extensively applied to describe MNP magnetization
for various applications such as diagnostic biosensing [25], Magnetic Particle Imaging
(MPI) [26], and therapeutic Magnetic Fluid Hyperthermia (MFH) [27]. Its application
to frequency mixing excitation seems therefore naturally reasonable. This assumption
is fostered by our results reporting very good agreement between experimental data
and Langevin model fitting (R2 > 0.98; cf. Figure 1). The resulting fitting parameters
(dc ≈ 7.8 nm and σ ≈ 0.35; cf. Table 2) are furthermore in good agreement with literature
values reporting a core diameter between dc ≈ 7 nm [28] and dc ≈ 11 nm [29] for nanomag®-
D SPIO. The broad size distribution (with width σ > 0.3) reflects a heterogeneous particle
size with an effectively range of dc = (3− 25) nm, cf. Figure 5.

Nevertheless, the Langevin model is only valid for noninteracting, single particle
ensembles with uniaxial anisotropy in thermodynamic equilibrium and (quasi)static mag-
netic fields [16]. Therein lies its major limitation, because the Langevin model cannot model
an opening of M(H)-loops (hysteresis), which are, however, expected for AMF excitations
at applied frequencies that approximate the inverse MNP relaxation time, f ∼ τ−1, as
the magnetic moment of each MNP begins to lag behind the driving AMF [2]. In contrast,
micromagnetic MC-simulations provide new insight in the frequency mixing excitation
of MNP by modeling the non-equilibrium dynamics of MNP by including thermal fluc-
tuations: The MC-simulations reveal a minor hysteresis in the M(H)-loop of the MNP (cf.
Figure 2), which is inaccessible via equilibrium Langevin theory. We attribute this minor
hysteresis to the small portion of large particles, whose magnetic relaxation is (thermally)
blocked by the volume (and therefore size cubed) dependent anisotropy barrier: K ·VC.
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This can be assessed by assuming an AC-field-dependent Brownian relaxation time
of [30]:

τB(HAC) =
τB√

1 + 0.21 · ξ(HAC)
2

(16)

and an AC-field dependent Néel relaxation time of [16]:

τN(HAC) = τ0 · exp

(
K ·VC

kB T
·
(

1− HAC
HK

)2
)

(17)

where HAC denotes the AMF amplitude, τB = 3ηVH/(kBT) the field-independent Brown-
ian relaxation time, ξ(HAC) = mHAC/(kBT) the reduced field parameter (cf. Equation (4)),
τ0 = 10−9 s the time constant, and HK = 2K/µ0MS the (uniaxial) anisotropy field strength.
From Equations (16) and (17), the effective relaxation time follows with:

τ =
1

τ−1
B + τ−1

N
. (18)

Using the (mean) values from Tables 1 and 2, and the experimental setup param-
eters with HAC = H1 + H2 ∼ 17 mT/µ0, one calculates τ ∼ τ0 ∼ 10−9 s so that
for f ∼ (30− 40) kHz the condition for the onset of hysteresis, f ∼ τ−1, is not ful-
filled. Because the measured imaginary parts of the mixing components are hundredfold
weaker than the real parts, we can conclude that dissipation is indeed negligible. How-
ever, for the small portion of large particles with dC ≥ 20 nm and naturally increasing
the effective hydrodynamic diameter dh > 20 nm, and presumably decreasing effective
anisotropy constant for these larger core particles, K ∼ 5 kJ/m3 [31,32], the effective
relaxation time increases by several orders of magnitude. The relaxation time for these
large particles is dominated by the Brownian relaxation mechanism, fulfilling the condi-
tion f ∼ τ−1. Consequently, the minor opening of the M(H)-loop observed in Figure 2
from MC-simulations is a direct contribution from these large size particles relaxing with
Brownian rotation. This assumption could, however, not be verified experimentally in our
current study, because the MNPs were immobilized due to sample preparation, blocking
Brownian rotation. Nevertheless, Figures 2 and 4 demonstrate the potential insight to
be gained on the micromagnetic level in the underlying mechanisms in dual frequency
excitation responses of MNP (see discussion regarding future experiments below).

Interestingly, these large size particles apparently also contribute most dominantly
to the Langevin model fitting to MC-simulation data (cf. Figure 4): When we deliberately
restrict the particle size range for Langevin model calculation to the largest portion of core
sizes (i.e., limiting the minimum core size dc), we find that 90% of the calculated signal
is contributed from the particles with dc ≥ 12.1 nm. Similarly, 99% of the signal stems
from dc ≥ 9.2 nm. With the reverse of the cumulative distribution function (CDF) of
the lognormal distribution (see Equation (A3) in Appendix B), the corresponding size
fractions (quantiles) of the distribution are calculated, beginning from the large-sized tail.
This finding is visualized in Figure 5. The largest 10.3% of the particles contribute 90%
of the FMMD signal. Furthermore, 99% of the signal is produced by the largest 31.8% of
particles. In other words, this means that almost all of the FMMD signal originates from
the large-sized tail of the size distribution.

This could also explain why the Langevin model can be fitted with very good agree-
ment to MC-simulation data (cf. Figure 4; R > 0.989), even though it is physically unable
to model nonequilibrium dynamic relaxation processes: The mathematical fitting routine
can force the fitting parameters (d0, σ, Np) to values outside the model’s range of validity
(for further details see Appendix B). As the opening M(H)-loop and our relaxation time
approximations (see above) suggest, thermodynamic equilibrium is not valid anymore
for large particles dC ≥ 20 nm at frequencies f ∼ (30− 40) kHz. Therefore, fitting the
model to the experimental data could lead to unreliable distribution parameters.
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particles on the large-sized tail of the distribution.

For other frequency-dependent biomedical applications of iron-oxide MNPs, such
as MPI [33,34] or MFH [32,35], an optimal core size of dc ∼ 25 nm has been suggested
from experiment and MC-simulation, stressing the importance of open hysteresis loops
for signal generation. Our results from Figures 4 and 5 could therefore indicate that
an opening of the M(H)-loop is also favorable for generating strong signals in mixed
frequency measurements. As mentioned above, our current sample preparation does not
allow experimental verification of this assumption, because Brownian rotation is blocked
for the immobilized MNP. Even more so, this assumption remains to be tested in future
experiments using MNP with larger core sizes, ideally suspended and freely rotatable
in solution. In future experiments, the question of whether the Brownian mechanism
dominates the MNP relaxation mechanism could be further probed by suspending MNP in
gelated matrices (e.g., agarose or poly-acrylamid gels), in which Brownian relaxation has
been shown to be controllably blocked in MFH measurements with particles of the same
size as used in the present study [36].

MC-simulations deviated quantitatively in intensity at the peaks by up to 70% from
the experimental values (cf. Figure 3) when directly compared. The first reason for this
could be that Brownian relaxation mechanism is blocked for immobilized MNPs in the
experimental sample, while it adds to the signal in MC-simulations (see paragraph above).
A second potential reason for deviations is that the parameters used for MC-simulation
input slightly differ from the experimental parameters. Another reason could be that MNPs
form clusters of a few particles in the experimental setting, which Dennis et al. consistently
found for nanomag-D SPIO from small-angle neutron scattering (SANS) and transmission
electron microscopy [37]. Clustering of MNPs has been suggested to lead to increased
particle–particle interaction, changed effective anisotropy, and restriction of MNP rotatabil-
ity [38–40]. Although the interplay of these clustering effects on MNP relaxation behavior is
the subject of ongoing discussions [39–42], it is overall assumed to diminish the experimen-
tal signal intensity [43]. Both the rise of particle–particle interaction—although purposefully
excluded from this study—and the influence of varying K could be investigated in future
MC-simulations studies (e.g., by diffusion-limited colloidal aggregation [42]) to advance
the understanding of its influence on mixed frequency excitation signal generation.
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Finally, we are aware that our current study is limited by the extraction of input
parameters for the MC-simulations from Langevin model fitting to experimental data (cf.
Table 2). Future studies will complement these assumptions by experimental methods,
e.g., measuring MNP core sizes via transmission electron microscopy (TEM) or the MNP
magnetic core size distribution from magnetic measurement [44], in addition to determining
the hydrodynamic diameters from dynamic light scattering (DLS) experiments [20], which
will serve as input parameters to further validate our fitting and modelling.

5. Conclusions

With the current work, we present the first insights into dual-frequency magnetic exci-
tation of MNP from interpreting experimental results in terms of both the thermodynamic
Langevin model and nonequilibrium dynamic MC-simulations. In summary, we draw the
following conclusions from our comparative study:

1. Both the Langevin model and MC-simulations reproduce the shape of the experimen-
tal signal satisfactorily (see Figures 1 and 3). However, punctual deviations between
experimental data and MC-simulations are observed (see Figure 3).

2. MC-simulations allow the investigation of the dynamic hysteresis (M(H))-loop during
AMF excitation, revealing a minor opening (cf. Figure 2). This opening is attributed
to the small portion of large, thermally blocked particles.

3. Langevin model fitting suggests that 90% of the experimentally detected FMMD
signal intensity is generated by the largest 10% of the particles (cf. Figure 5).

4. For the large particles (dc > 20 nm) which dominate the FMMD signal, relaxation
cannot be neglected. However, this effect is not included in our Langevin model. We
suspect this is the reason for observed deviations between the Langevin model and
MC-simulations.

We are aware that these findings raise more questions and could serve as the starting
point for further investigations. Based on these conclusions we propose the following
respective future research directions:

• Complementary experimental methods should be used to derive MNP properties for
more accurate input in the MC-simulations (to address and remedy point 1, above).
From this, we also plan to further increase our predictive accuracy in the future by
coordinating simulation and experimental parameters to be identical (both materials
properties and field parameters).

• Experimental sample preparation should be expanded to allow—ideally gradually
controllable—Brownian rotation of MNPs (e.g., in poly-acrylamide gels) in order to
precisely analyze the role of the Brownian relaxation mechanism for signal generation
(see also next point below).

• Furthermore, MC-simulations could be expanded by including magnetic particle–
particle interaction effects and the inclusion of clustering-effects of MNPs. This
should be investigated with special regard to point 3 (above), because magnetic
interaction scales with increasing particle core size. Additionally, the influence of
effective anisotropy could be studied systematically with MC-simulations. Finally,
the dominant relaxation mechanism in dual frequency excitation could be further
investigated by weighting Néel and Brownian relaxation mechanisms systematically
in MC-simulations, and comparing the results to experimental findings.

• Point 4 (above) suggests the necessity for multi-theory approaches to interpret dual-
frequency MNP excitation responses. Therefore, systematic parameter studies, e.g.,
varying MNP properties such as effective anisotropy, median core sizes and shell
sizes, and AMF parameters (H1 H2, f1, f2), should be performed to generate a multi-
parameter repository from MC-simulations. This could serve as a basis for a unified
model to explain FMMD signal generation in the future. However, such a study must
be well designed to ensure acceptable computational effort.
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Appendix A. Estimating the Effect of Magnetic Dipole–Dipole Interaction Energy

The magnetic dipole–dipole interaction energy exerted on a single magnetic nanopar-
ticle by N neighboring particles with interparticle distance vector di can be described
by [20]:

ε IA = ∑
i

µ0

4πd3
i
·
(

3 · (m0 · di) · (mi · di)

d2
i

−m0 ·mi

)
(A1)

For two neighboring particles with magnetic moments |m0| = |mi| = mp = VC ·MS
(cf. Equation (2)), Equation (A1) can be simplified to the extremal energies:

ε IA,min =
µ0m2

p

4πd3 and ε IA,max = 3
µ0m2

p

4πd3 (A2)

Using Equation (A2) and the MNP properties from Table 2, we calculated a corridor
for ε IA in dependence of the interparticle distance, shown in Figure A1. The thermal
excitation energy of εtherm = kB · T = 25.8 meV for T = 300 K is also marked in Figure A1.
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From the intersection of εtherm and the corridor, the range of interparticle distances
in which magnetic dipole–dipole interaction energy is of the same order of magnitude
as the thermal excitation energy can be estimated with d = (7.1− 10.2) nm (see mark
in Figure A1). In other words, for average interparticle distances d > 10.2 nm, thermal
excitation can be assumed to dominate magnetic interaction.

The average interparticle distance davg can be estimated from the number of particles in
solution, z, by taking the inverse third root: davg = z−1/3. With z = 4.3 · 1015 1

cm3 (taken from
nanomag-D SPIO manufacturer’s datasheet) we estimate an average interparticle distance
of davg ≈ 61.5 nm. From Figure A1 one can see that for such an average interparticle
distance the thermal excitation energy is two orders of magnitude larger than magnetic
dipole–dipole interaction energy, εtherm � ε IA, corroborating our assumption to neglect
magnetic interaction between MNP for our calculations.

Appendix B. Log-Normal Distribution Probability Density Function (PDF)

The log-normal distribution probability density function (PDF) for a general particle
size d is defined as shown in Equation (5) with the median diameter d0 and the standard
deviation σ of the diameters’ natural logarithm. Integration over PDF from 0 to dc yields
the cumulative distribution function (CDF) [17]:

CDF(dc, d0, σ) =

dc∫
0

dd·PDF(d, d0, σ) =
1
2
+

(
1 + erf

(
ln(dc/d0)√

2 · σ

))
(A3)

Standard CDF cumulates particles starting from the small-sized tail of the distribution.
For FMMD, large particles contribute most of the signal. To quantify their contribution, it
is advantageous to consider the reverse cumulative distribution starting from the large size
tail, i.e., 1—CDF. The exemplary log-normal distribution PDF(dc,d0,σ) and its reverse CDF
using the parameters from Table 2 are plotted in Figure 5.

By fitting the Langevin model with fixed dc = 7.81 nm to the MC-simulation results,
a significantly larger width parameter σ = 1.466 was obtained (see Section 3.3). The
corresponding lognormal distribution and its reverse CDF are plotted in Figure A2. The
FMMD signal calculated with this distribution is plotted in Figure 4. Analogously to the
quantile analysis described in Section 4, the quantiles yielding 90%, 99%, and 99.9% of the
FMMD signal were also determined for this wider distribution, as shown in Figure A2.
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For this wider distribution, it was found that the largest 3.0% of the particles (with
dc > 18.8 nm) contribute 90% of the FMMD signal. The largest 11.4% of particles (with
dc > 13.7 nm) contribute 99% of signal. Almost all of the signal (99.9%) is generated by the
largest 24.3% of the particles above 10.8 nm core size.
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